Skip to main content

Standard Normal Distribution with examples using Python

How to adopt Embeddings for Categorical features in Tabular Data using PyTorch's nn.Embedding( )-- Part 2

In the previous post, we set up the context to utilize embeddings for categorical features. In this post, we will figure out how to create these embeddings and combine them with other continuous features to build a neural network model.

Dataset Download

We will utilize the UCI machine learning repo which has a dataset on credit card default for customers in Taiwan. This dataset is also available in Kaggle. Metadata about this dataset is available on the respective websites. To follow this post, it is recommended to download the dataset from Kaggle. Most of the features are self explanatory.

Embedding Creation

A few definitions first. Levels in a categorical feature represent unique values available for that categorical feature. For e.g. MARRIAGE has levels 0,1,2,3. Each level of a categorical feature is represented by a vector of numbers. So, if you stack up all the levels together and all the vectors together, you can imagine levels to be a column vector of shape (n,1) and a corresponding matrix of shape (n,dim) where n is number of levels and dim is number of dimensions or columns of the embedding.

Levels in the column vector can be called keys. These keys are assigned values from 0 to n-1 in PyTorch. So all levels for a feature in the dataset need to be mapped between 0 to n-1 before we can utilize nn.Embedding().

Fig 1: Lookup Table for Categorical Features

In our data, the feature MARRIAGE has 4 levels 0,1,2,3. Each of the 4 levels can be represented by a vector of values. So MARRIAGE is represented by a matrix of 4x5 where 4 is number of levels in the MARRIAGE feature and 5 is the number of dimensions that we have chosen. The values that we see in the matrix are assigned randomly initially. There are many techniques to initialize weights During backpropagation, we will learn an optimized set of weights for this feature matrix. Also, notice that the keys of the lookup table go from 0 to n-1 where n is the number of levels in the categorical feature.

It was sheer coincidence that the levels of MARRIAGE feature had values 0,1,2,3 in the dataset. So understanding the lookup table was easy. But have a look at the lookup table for the Categorical feature SEX. The original levels in this feature are 1 and 2. But the lookup table has keys as 0 and 1 . Similarly, check out the lookup table for PAY_0. The lookup table has keys from 0 to 10 while the original levels in PAY_0 take values from -2 to 8.

Always remember that the lookup table will have keys from 0 to n-1 where n is the number of levels in the categorical feature. This means we need to some how map the levels in the original dataset to 0 to n-1. Once we have this mapping, the model can learn to optimize weights for each of the feature matrices. As shown in Fig 1, the model is expected to learn a good set of weights for MARRIAGE with dimension 4x5, SEX with dimension 2x3, PAY_0 with dimension 11x4.

Let's see all of this in action now. We first need to map the original levels in the categorical features to lie between 0 and n-1

.

df = pd.read_csv("../UCI_Credit_Card.csv")

cont_cols = ['LIMIT_BAL',	'AGE',	'BILL_AMT1',	'BILL_AMT2',	'BILL_AMT3',	'BILL_AMT4',	'BILL_AMT5',	'BILL_AMT6',	'PAY_AMT1',	'PAY_AMT2',	'PAY_AMT3',	'PAY_AMT4',	'PAY_AMT5',	'PAY_AMT6']
cat_cols = ['SEX',	'EDUCATION',	'MARRIAGE',	'PAY_0',	'PAY_2',	'PAY_3',	'PAY_4']

target_col = 'default.payment.next.month'
cat_code_dict= {}
for col in cat_cols:
  temp = df_train[col].astype('category')
  cat_code_dict[col] = {val:idx for idx,val in enumerate(temp.cat.categories)}

print(cat_code_dict['SEX'])
--->{1: 0, 2: 1}

Next, we figure out the number of levels in each categorical feature.


embedding_size_dict = {key: len(val) for key, val in cat_code_dict.items()}

print(embedding_size_dict)
--->
{'SEX': 2,
 'EDUCATION': 7,
 'MARRIAGE': 4,
 'PAY_0': 11,
 'PAY_2': 11,
 'PAY_3': 11,
 'PAY_4': 11}

Now, we have to figure out the dimensions of embeddings for each of the categorical features. fast.ai has a discussion forum where this has been dealt with in detail. We will select dimension as minimum of 50 and half of number of levels available in each category. You are free to experiment with other heuristics as well.


embedding_dim_dict= {key: min(50,val//2) for key,val in embedding_size_dict.items()}
print(embedding_dim_dict)
---> {'SEX': 1, 'EDUCATION': 3, 'MARRIAGE': 2, 'PAY_0': 5, 'PAY_2': 5, 'PAY_3': 5, 'PAY_4': 5}

Next, we create Embedding Matrix for each of the categorical features. As mentioned above, we create embedding_size_dict and embedding_dim_dict to determine the number of dimensions for each feature. nn.Embedding() has to be fed 2 important parameters.

  1. num_embeddings: Refers to size of dictionary. It just means you provide number of levels for that categorical feature
  2. embedding_dim: Refers to the number of dimensions you need to represent this categorical feature.

We iterate through cat_cols and create an Embedding layer for each such feature by passing the relevant num_embeddings and embedding_dim. These embedding layers are stored in a embedding dictionary and wrapped in nn.ModuleDict. While we iterate, we also calculate the total dimensions of the categorical features and store in total_embed_dim. All these functionalities are now depicted by the below class method.


def _create_embedding_vectors(self):
    '''
    Create Embedding Layer for each of the categorical variable in dataset
    '''
    ##Get no of levels in each categorical variable and store in dictionary
    self.embedding_size_dict = {key: len(val) for key, val in self.cat_code_dict.items()}
     ##Determine dimension of embeddng vector for each categorical variable
    self.embedding_dim_dict = { key: val//2 for key,val in self.embedding_size_dict.items()}
    embeddings = {}
    self.total_embed_dim = 0
    for col in self.cat_cols:
      num_embeddings = self.embedding_size_dict[col]
      embedding_dim = self.embedding_dim_dict[col]
      embeddings[col] = nn.Embedding(num_embeddings, embedding_dim)
      self.total_embed_dim+= embedding_dim
    return nn.ModuleDict(embeddings)

Data Preprocessing

We will define some helper methods to process our dataset and feed data to our model. We will also figure out how to combine categorical and continuous features to build a neural network. Preprocessing is common across train,test and validation datasets. All these classes defined below are fairly self explanatory.


import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from sklearn.model_selection import train_test_split
import sklearn.metrics as metrics
from sklearn.preprocessing import StandardScaler
from collections import OrderedDict
import pickle
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from matplotlib import pyplot as plt

class Process_Dataset:
  def __init__(self,path,cat_cols,cont_cols,target_col):
        self.cat_cols = cat_cols
        self.cont_cols = cont_cols        
        self.target_col = target_col
        self.df= pd.read_csv(path) ##Load the dataset
        self.cat_cols = cat_cols   ##Initialize all categorical features
        self.cont_cols = cont_cols  ##Initialize all continuous features
        self.target_col = target_col ##Set the target feature
        self.data_split()  ##Split the data into train and test set
        self._preprocess()
        self.scaler = StandardScaler()
        self.df_train = self._process(self.df_train,1)
        self.df_test = self._process(self.df_test)
        self.df_val = self._process(self.df_val)
       
  def data_split(self):
    '''
    Splits the data into 60% train set , 30% val set and 10% test set
    '''
    test_size = 0.1
    val_size = 0.3
    random_state = 1234
    self.df_train,self.df_test = train_test_split(self.df, test_size=test_size, random_state = random_state, stratify = self.df[target_col])
    self.df_train,self.df_val = train_test_split(self.df_train, test_size= val_size, random_state = random_state, stratify = self.df_train[target_col])

  def _preprocess(self):

    '''
     Creates a mapping from 0 to n-1 for each level in every categorical feature
    '''
    self.cat_code_dict= {}
    for col in self.cat_cols:
      temp = self.df_train[col].astype('category')
      self.cat_code_dict[col] = {val:idx for idx,val in enumerate(temp.cat.categories)}
  
  def _process(self,_df, flag=0):
    '''
    We scale numerical variables using StandardScaler from scikit-learn
    '''
    _df = _df.copy()
    if flag:
      self.scaler.fit(_df[cont_cols])

    # numeric fields
    _df[self.cont_cols] = self.scaler.transform(_df[cont_cols])
    _df[self.cont_cols] = _df[self.cont_cols].astype(np.float32)

    # categorical fields
    for col in self.cat_cols:
      code_dict = self.cat_code_dict[col]
      _df[col] = _df[col].map(code_dict).astype(np.int64)

    # Target
    _df[target_col] = _df[self.target_col].astype(np.float32)
    return _df

We have completed defining the Process_Dataset. We now define a TabularDataset which inherits from Dataset class in PyTorch. Next, we define a PyTorch DataLoader to feed data to the model. The goal is to finally get tensors of categorical,continuous and target features out from the DataLoader.

Define Dataset and Dataloaders in PyTorch


class TabularDataset(Dataset):  
    def __init__(self, df, cat_cols,cont_cols,target_col):        
      self.cat_cols = cat_cols
      self.cont_cols = cont_cols
      self.target_col = target_col
      self.df = df
    
    def __len__(self):
      return self.df.shape[0]

    def __getitem__(self, idx):
      cat_array = self.df[self.cat_cols].iloc[idx].values
      cont_array = self.df[self.cont_cols].iloc[idx].values
      target_array = self.df[self.target_col].iloc[idx]
      cat_array = torch.LongTensor(cat_array)
      cont_array = torch.FloatTensor(cont_array)
      
      return cont_array, cat_array, target_array
  
###First do all the preprocessing (Scaling and splitting dataset)####
dataset = Process_Dataset("../UCI_Credit_Card.csv",cat_cols,cont_cols,target_col)
##Create train and test instances of Dataset class##
dataset_train= TabularDataset(dataset.df_train, cat_cols, cont_cols,target_col)
dataset_test= TabularDataset(dataset.df_test, cat_cols, cont_cols,target_col)
##Create train and test dataloaders##
train_loader = DataLoader(dataset_train,batch_size=16, num_workers=2,drop_last=True)
test_loader = DataLoader(dataset_test, batch_size=16, num_workers=2,drop_last=True)
val_loader = DataLoader(dataset_val, batch_size=8, num_workers=2,drop_last=False)

Neural Network definition in PyTorch

Our neural network is a stack of Linear Layer and a ReLU layer repeated once. The final Linear layer provides help with the class predictions.


class EntityEmbeddingNN(nn.Module):
  def __init__(self,cat_code_dict,cat_cols,cont_cols,target_col,n_classes):
    super().__init__()
    self.cat_code_dict = cat_code_dict
    self.cat_cols = cat_cols   ##Initialize all categorical features
    self.cont_cols = cont_cols  ##Initialize all continuous features
    self.target_col = target_col ##Set the target feature
    self.embeddings = self._create_embedding_vectors()
    self.in_features = self.total_embed_dim+ len(cont_cols)
    self.layers = nn.Sequential(
        nn.Linear(self.in_features,64),
        nn.ReLU(),
        nn.Linear(64,16),
        nn.ReLU(),
        nn.Linear(16,n_classes)       
    )

How do we combine categorical and continuous features though?. Observe the forward method below!!


def forward(self,cat_tensor,num_tensor):
    embedding_tensor_group = []
    for idx, col in enumerate(self.cat_cols):
      layer = self.embeddings[col]
      out = layer(cat_tensor[:,idx])
      embedding_tensor_group.append(out)
    embed_tensor= torch.cat(embedding_tensor_group, dim=1)
    out_tensor = torch.cat((embed_tensor,num_tensor), dim=1)
    out_tensor = self.layers(out_tensor)
    
    return out_tensor 

In the forward method, we first iterate through our categorical features. For each of the features, we select corresponding PyTorch Embedding layer created during initialization. We pass correspoding categorical feature data through the selected layer and append it to the embedding_tensor_group list.

If you observe the image below, each categorical feature from the sample is first converted to a number from 0 to n-1 based on the mapping present in cat_code_dict. Next, we select the appropriate vector corresponding to the modified values of the categorical features. Finally stacking occurs along the columns and this can be concatenated with the continuous features. Backpropagation will take care of the final weights of the embedding layer.

Finally, the resultant matrix is passed through the Linear+RELU layer to output out_tensor. This now becomes a Vanilla Neural Network to be trained. Training and validation would be similar to how we do for any regular neural network. I have linked a Colab Notebook for this here in case anyone wants to try this.

The Training Loop


#https://averdones.github.io/reading-tabular-data-with-pytorch-and-training-a-multilayer-perceptron/
##http://ethen8181.github.io/machine-learning/deep_learning/tabular/tabular.html

cont_cols = ['LIMIT_BAL',	'AGE',	'BILL_AMT1',	'BILL_AMT2',	'BILL_AMT3',	'BILL_AMT4',	'BILL_AMT5',	'BILL_AMT6',	'PAY_AMT1',	'PAY_AMT2',	'PAY_AMT3',	'PAY_AMT4',	'PAY_AMT5',	'PAY_AMT6']
cat_cols = ['SEX',	'EDUCATION',	'MARRIAGE',	'PAY_0',	'PAY_2',	'PAY_3',	'PAY_4']
target_col = 'default.payment.next.month'

print(f"We will use {len(cat_cols)} categorical features")
print(f"We will use {len(cont_cols)} continuous features")


###First do all the preprocessing (Scaling and splitting dataset)####
dataset = Process_Dataset("/content/gdrive/MyDrive/Embedding/Data/UCI_Credit_Card.csv",cat_cols,cont_cols,target_col)
##Create train and test instances of Dataset class##
dataset_train= TabularDataset(dataset.df_train, cat_cols, cont_cols,target_col)
dataset_test= TabularDataset(dataset.df_test, cat_cols, cont_cols,target_col)
dataset_val= TabularDataset(dataset.df_val, cat_cols, cont_cols,target_col)
##Create train and test dataloaders##
train_loader = DataLoader(dataset_train,batch_size=8, num_workers=2,drop_last=True)
test_loader = DataLoader(dataset_test, batch_size=8, num_workers=2,drop_last=True)
val_loader = DataLoader(dataset_val, batch_size=8, num_workers=2,drop_last=False)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = EntityEmbeddingNN(dataset.cat_code_dict, cat_cols,cont_cols,target_col,1)
model= model.to(device)
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
train_loss_per_iter = []
train_loss_per_batch = []

test_loss_per_iter = []
test_loss_per_batch = []

n_epochs=8

for epoch in range(n_epochs):
  running_loss = 0.0
  for idx, (cont_array, cat_array, target_array) in enumerate(train_loader):
    cont_array = cont_array.to(device)
    cat_array = cat_array.to(device)
    target_array = target_array.to(device)    

    outputs = model(cat_array,cont_array)
    loss = F.binary_cross_entropy_with_logits(outputs.squeeze(1),target_array)
    # Zero the parameter gradients
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    running_loss += loss.item()
    train_loss_per_iter.append(loss.item())

  
  train_loss_per_batch.append(running_loss / (idx + 1))
  running_loss = 0.0
 
  model.eval()
  with torch.no_grad():
    for idx, (cont_array, cat_array, target_array) in enumerate(test_loader):
      cont_array = cont_array.to(device)
      cat_array = cat_array.to(device)
      target_array = target_array.to(device)    

      outputs = model(cat_array,cont_array)
      loss = F.binary_cross_entropy_with_logits(outputs.squeeze(1),target_array)
           
      running_loss += loss.item()
      test_loss_per_iter.append(loss.item())
    
    test_loss_per_batch.append(running_loss / (idx + 1))
    running_loss = 0.0  

Model Validation

Validation Loop looks like this


def predict(model):
  y_pred=[]
  y_actual=[]
  model.eval()
  with torch.no_grad():
    for idx, (cont_array, cat_array, target_array) in enumerate(val_loader):
      y_actual.append(target_array)
      cont_array = cont_array.to(device)
      cat_array = cat_array.to(device)
      target_array = target_array.to(device)    
      outputs = model(cat_array,cont_array)
      y_prob = torch.sigmoid(outputs).cpu().numpy()
      y_pred.append(y_prob)
      

  y_pred = np.array([elem for ind_list in y_pred for elem in ind_list])
  y_actual = np.array([elem for ind_list in y_actual for elem in ind_list])

  return y_pred,y_actual

def compute_score(y_true, y_pred, round_digits=3):
    log_loss = round(metrics.log_loss(y_true, y_pred), round_digits)
    auc = round(metrics.roc_auc_score(y_true, y_pred), round_digits)

    precision, recall, threshold = metrics.precision_recall_curve(y_true, y_pred)
    f1 = 2 * (precision * recall) / (precision + recall)
    mask = ~np.isnan(f1)
    f1 = f1[mask]
    precision = precision[mask]
    recall = recall[mask]

    best_index = np.argmax(f1)
    threshold = round(threshold[best_index], round_digits)
    precision = round(precision[best_index], round_digits)
    recall = round(recall[best_index], round_digits)
    f1 = round(f1[best_index], round_digits)

    return {
        'auc': auc,
        'precision': precision,
        'recall': recall,
        'f1': f1,
        'threshold': threshold,
        'log_loss': log_loss
    }

References

  1. http://ethen8181.github.io/machine-learning/deep_learning/tabular/tabular.html
  2. https://averdones.github.io/reading-tabular-data-with-pytorch-and-training-a-multilayer-perceptron/

Hope this tutorial helps clear lot of doubts in terms of using categorical features in embedding layers!!!

Comments

Post a Comment

Popular posts from this blog

How to adopt Embeddings for Categorical features in Tabular Data using PyTorch's nn.Embedding( )-- Part 1

How to adopt Embeddings for Categorical features in Tabular Data using PyTorch's nn.Embedding( )-- Part 1 In this post, we will talk about using embeddings for categorical features using PyTorch. This post will be broken down into following parts. Dataset Download Data Understanding Data Preprocessing Embedding Creation Define Dataset and Dataloaders in PyTorch Neural Network definition in PyTorch The Training Loop Model Validation The idea about using Embeddings from Categorical Features was first mooted during a Kaggle contest and a paper was also published on this. In the context of NLP and word embeddings, we represent each word in an n dimesnional vector space. In a similar way, we can represent any categorical feature in an n dimesnional vector space as well. 1. Dataset Download We will utilize the UCI machine learning repo which has a dataset on credit card default for customers in Taiwan. This dataset is also av...

Standard Normal Distribution with examples using Python

Standard Normal Distribution with examples In our previous post, we talked about Normal Distribution and its properties . In this post, we extend those ideas and discuss about Standard Normal Distribution in detail. What is a Standard Normal Distribution? A Normal Distribution with mean 0 and standard deviation 1 is called a Standard Normal Distribution . Mathematicallty, it is given as below. Fig 1:Standard Normal Probability Distribution Function For comparison, have a look at the Normal Probability Distribution Function. If you substitute mean as 0 ,standard deviation as 1, you derive the standard normal probability distribution function Fig 2: Normal Probability Distribution Function Need for a standard normal probability distribution function We need to extract probability information about events that we are interested in. For this, first we need to convert any normal random variable...